PHP2550: Practical Data Analysis

Assignment 3: Regression Analysis

Antonella Basso

November 4, 2022

1. Logistic Regression Paper

First, read the paper Predicting lung cancer prior to surgical resection in patients with lung nodules by Deppen
et al. available on Canvas. This paper introduces a model called TREAT that is currently used in practice to
predict lung cancer. Then, respond to the questions below.

a. Write a two-paragraph summary of the paper.

b. Compare the Mayo model to the TREAT model in terms of the initial goals of building the model, the
population the training data represented, the variables included, and the resulting model.

c. How was missing data handled?

d. What measures or visuals were used to evaluate the models? How do we interpret these?

e. What were some limitations that the paper addressed?

Solution
a. This paper discusses a lung cancer research endeavor to develop a novel clinical predictive model aimed

at identifying suspicious lung lesions in individuals with existing pulmonary nodules during preoperative
evaluation. The development of the Thoracic Research Evaluation And Treatment (TREAT) model
reflects an attempt to further reduce unnecessary operations (lung resections) for benign disease,
improving upon current poorly calibrated models by estimating a lesion’s “probability of malignancy at
the point of surgical evaluation”, rather than merely focusing on the improvement of screening and
biopsy referrals in “general medical populations”—a valuable predictive task, which no existing model
of this kind presently addresses. Moreover, the paper describes the corresponding study conducted
to evaluate the performance of the TREAT model in comparison to the Mayo Clinic model with an
emphasis on discrimination, calibration, overfitting, and overall diagnostic accuracy. Specifically, the
model was implemented on a total of 492 eligible patients from the 606 reflected in VUMC’s Thoracic
Surgery Quality Improvement database and clinic records who received lung nodule (or mass) evaluations
for known or suspected non-small cell lung cancer (NSCLC) from January 2005 to October 2010. For
the purpose of examining the generalizability of the model, TREAT was subsequently validated on
the 226 eligible patients identified within the 254 constituting the Tennessee Valley Veterans Affairs
Cohort (VA)—a group of individuals receiving thoracic operations for confirmed or suspected lung
cancer between January 2005 and December 2013.

Having appealed to logistic regression for predicting malignancy, results showed lung cancer prevalences
among the VUMC cohort and VA validation cohort of 72% and 93%, respectively. Moreover, in addition
to finding a non-linear relationship, modeled as a restricted cubic spline, between lung cancer and
smoking intensity (measured by pack-years), the TREAT model identified positive associations between
risk of lung cancer and age; pre-operative lesion size and growth; previous cancer; and FDG-PET scan
avidity. While internal validation for the TREAT model with optimism corrected bootstrapping (with



replacement, 500 iterations) resulted in an AUC of 0.87 (95%CI: 0.83 — 0.92) and a Brier score of 0.12
(95%CT: 0.10 — 0.14), external validation resulted in an AUC of 0.89 (95%CI: 0.79 — 0.98) and a Brier
score of 0.08 (95%CI: 0.06 — 0.10)*—demonstrating the model’s overall ability to discriminate between
cancer and benign disease (AUC scores closer to 1), as well as its calibration, that is, the accuracy of
its probabilistic predictions (Brier scores closer to 0).

b. As highlighted in part (a), while the Mayo Clinic model was designed to “evaluate nodules in patients
selected from a general population who had a lesion found on imaging”, the TREAT model was
constructed with the more specific aim of estimating a lesion’s “probability of malignancy at the point
of surgical evaluation” for the purpose of aiding in the diagnosis of suspected lung cancer “without
missing early stage disease”. It is reasonable to infer that this difference in initial goals is related to the
observed differences in model covariate choices and, subsequently, model performance with regards to
calibration and overall diagnostic accuracy, as suggested in the paper. In particular, the Mayo model
includes variables for an individual’s age, smoking history (Y/N), and status of previous cancer, as well
as their lesion’s size, spiculation, and location. Conversely, the TREAT model includes variables for an
individual’s age, gender, BMI, COPD, smoking intensity (pack-years), hemoptysis, and status of previous
cancer, as well as their lesion’s size, growth, spiculation, location, and FDG-PET scan avidity—a set of
predictors carefully chosen due to their relevance in either “previously published and validated models”;
recent guidelines for surgical evaluation referral and diagnosis; or observations made by medical experts
(thoracic surgeons). Of the six covariates found to be correlated with lung cancer by the TREAT
model, and hence significant in predicting risk for malignancy—smoking intensity (in pack-years), age,
previous cancer, FDG-PET scan avidity, and pre-operative lesion size and growth—only three of them
were included in the Mayo model; suggesting the importance of the remaining variables for diagnostic
accuracy given the TREAT model’s superior performance. As mentioned in the paper, such additional
variables “improved the discrimination between benign disease and lung cancer”.

Specifically, results showed that while the Mayo model, whose “published coefficients to estimate lung
cancer risk” were used for comparative analysis, had AUC scores of 0.80 (95%CI: 0.75 — 0.85) and
0.73 (95%CI: 0.60 — 0.85) for the VUMC development and VA validation datasets, respectively, the
bootstrapped TREAT model had corresponding AUC scores of 0.87 (95%CI: 0.83 — 0.92) and 0.89
(95%CI: 0.79 — 0.98)—reflecting the TREAT model’s superior performance, as well as the Mayo model’s
decreasing accuracy in discriminating malignancy with increasing disease prevalence. Similarly, the
Brier scores for the Mayo Clinic model were higher that those observed in the TREAT model; 0.17
(95%CI: 0.15 — 0.19) and 0.18 (95%CIL: 0.15 — 0.21) for the VUMC and VA cohorts, respectively—also
demonstrating the Mayo model’s decreasing calibration with increasing lung cancer prevalence. Although
the Mayo Clinic model, on average, overestimated the risk of lung cancer, predicting higher probabilities
of disease among individuals with no lesion growth and non-avid FDG-PET scans compared to the
TREAT model (i.e., factors not considered by the Mayo model but included in the TREAT model),
researchers also point out that the Mayo model appeared to underestimate this risk in lower quintiles
among the study populations, thereby limiting “its use in clinical practice for patients being evaluated
for surgery”. It is important to note however, that lung cancer prevalence in the VUMC cohort used to
train the TREAT model was much higher (72%) than that reflected in the population used to train
(23%) and validate (44%) the Mayo Clinic model. This, in tandem with the Mayo model’s more general
initial aims and limited number of significant predictors of malignancy, is the likely reason for its
“poor calibration in patients referred for surgical evaluation” and inconsistent predictive discrimination
compared to the TREAT model, making the latter better suited for “providing clinical guidance in
estimating individual likelihood of lung cancer”.

c. As stated by the authors and shown in Table 1, complete covariate data were available for 264/492 ~
53.66% of individuals in the VUMC development cohort and 136/226 ~ 60.18% of individuals in the
VA validation cohort, with those having confirmed cancer diagnoses being more likely to have complete
observed data. Although missingness was most prevalent with regards to FDG-PET scan avidity
and lesion growth, the remaining variables of interest had no more than 16% of their values missing
for either dataset. In turn, researchers utilized only the observed data to conduct their analysis of

1Differs from the value of 0.13 reflected in the paper’s abstract.



demographic variables and pre-specified lung cancer predictors prior to model fitting. Subsequently,
researchers implemented multiple imputation techniques and predictive mean matching to correct for
missingness in the datasets used to train and validate the TREAT model. As mentioned in the paper,
the corresponding multiple imputation assumptions were examined following the methods of Potthoff et
al., which were were determined to not be in conflict with the assumptions put in place by the missing
data. Nonetheless, the presence of missing data, particularly as it pertains to the variables found to
be significant predictors of lung cancer, poses potential problems regarding accuracy in the model’s
predictions. That is, despite the TREAT model’s observed generalizability and superior performance,
it is possible that having had access to more complete training and testing data would have further
improved its diagnostic accuracy. In this light, researchers argue that the decision to include patients
who did not have a surgical resection, instead having undergone radiographic surveillance, despite having
increased the amount of missing data, actually “excluded a bias in the spectrum of risk encountered by
clinicians” and minimized potential bias due to imbalance in the cohort (i.e., underrepresentation of
this class of individuals). Notably, they claim that the observed pattern of missingness with regards
to certain covariates (e.g., FEV1) may be attributed to the fact that certain tests are only typically
performed on patients for whom resection is deemed likely, suggesting that data may not be in fact
missing at ramdom (NMAR). Although this assumption contradicts that of the multiple imputation
algorithm used in the study, subsequent sensitivity analysis confirmed that implementing the TREAT
model only on complete cases yielded similar results to those observed when modeling on the imputed
data.

d. Overall model performance on the VUMC and VA datasets were compared and assessed for both the
TREAT and Mayo Clinic models on the basis of Brier scores and AUCs—a graph for which is given
by Figure 2. While the former measure is used to evaluate the accuracy of a model’s probabilistic
predictions or “forecasts” regarding a set of events with observed binary outcomes, the latter is used to
gauge a model’s ability to distinguish between (positive and negative) outcome classes (e.g., lung cancer
vs. benign disease). Formally, these can be interpreted as the mean squared error (MSE) between
predicted probabilities and observed values, and the area under the receiver operating curve (ROC)?,
respectively. Although both measures range between 0.0 and 1.0, a well-calibrated model will see Brier
scores close to 0.0, given that low values convey small discrepancies between probability forecasts and
observed outcomes, and hence, little predictive error. Meanwhile, AUC values close to 1.0 suggest
high class separability, with a value of or near 0.5 implying that the model has no discrimination
capacity to distinguish between a positive and a negative class. Thus, AUC scores of 0.87 and 0.89 for
the TREAT model on the VUMC and VA cohorts, demonstrate the model’s strength in its ability to
discriminate between lung cancer and benign disease—which is not only superior in comparison to that
of the Mayo Clinic model, as previously mentioned, but more generalizable given that the Mayo model’s
diagnostic accuracy decreases with increased disease prevalence. In a similar vein, having displayed
low and decreasing Brier scores of 0.12 and 0.07 with increased disease prevalence, both attests to the
TREAT model’s superior calibration and further supports its potential to generalize to a the population.
Particularly, given that, in contrast to the Mayo model, the TREAT model’s lower Brier scores indicate
that it is able to model risk more effectively, with their decreasing behavior suggesting that it becomes
less prone to predictive error in the face of growing lung cancer prevalence.

e. As mentioned in part (c), the presence of missingness in covariate data may have introduced bias into
the TREAT model, reflecting one of the study’s limitation in challenging the validity of its estimates.
As discussed in the paper however, the observed patterns of missingness, which saw a shift in the
corresponding (missing data) assumptions, rendered this potential for bias not immediately threatening
to the model’s reliability (although worthy of mention), especially when scrutinized under subsequent
sensitivity analysis. An additional constraint identified by researchers was found to be particularly
relevant with regards to the model’s generalizability. Namely, the fact that the external validation cohort,
in addition to having displayed a high prevalence of lung cancer, represents a predominantly male Veteran
population with preoperative symptoms and disproportionately high smoking incidence, in tandem
with the fact that the development data was obtained from a single academic medical center’s database

2The curve obtained from plotting the model’s true positive rate (i.e., “recall” or sensitivity”) against its false positive rate
(i-e., 1-“specificity”), as shown in Figure 2.



which embodied a carefully selected set of variables, could potentially restrict the pool of individuals to
whom the model may apply. Specifically, despite not having observed a decline in evaluation measures
(AUC and Brier scores) which is indicative of the model’s capacity for generalizability, the potential for
other populations of prospective lung resection recipients to comprise a diverse set of referral patterns
and disease factors, all while reflecting varying disease prevalence, calls for further investigative work
with such differences in mind to improve upon, validate, and further extend the generalizability of the
TREAT model prior to its clinical use.



2. Regression Application

We will reproduce the results from the paper on abortion legislation from last assignment and extend the
results. The data used for this problem comes from the American Community Survey (https://www.census.g
ov/programs-surveys/acs), scraped state health department websites (source http://www.johnstonsarchive
.net/policy/abortion/), and scraped abortion provider locations (original source no longer online but the
data was collected in 2017-2018). The file reproductive health.csv contains all this information by county
while the file state laws.csv has whether a state is characterized as hostile under the conditions mentioned
in the paper. I've also included the full preprocessing csv and original data on Canvas if you are interested
(thanks to Rob Zielinski and Sarah Voter for providing their code from their final project last year).

First, fit a logistic regression model to predict whether a state is highly restrictive based on demographic
information (you do not need to consider model building in this stage—use the same variables used in the
paper). Then, use this model to build a propensity-score weighted, regression model to predict the rate of
abortions per 1,000 women to replicate the result in the Brown et al paper. Compare your results to the
original paper. You do not have to use cluster-robust standard errors.

Then, consider including other public health and economic factors in the model. The goal of this extension is
to focus on the role that public services including public health insurance coverage, and specifically coverage
of abortions under Medicaid, may play in influencing abortion rates.

Solution
1. Model Replication

With the goal of eliminating potential confounding due to factors observed in the data, we turn
to propernsity score (PS) weighting (i.e., inverse probability (IP) weighting), following the paper,
to obtain an unbiased causal effect estimate prior to recreating the model. Part of the appeal
of this method comes from the fact that it offers a simple weight-based approach for creating a
“pseudo-population” from our data in which legislative climate is independent of the observed
demographic factors. In turn, this allows us to implement a propensity-score weighted regression
model for predicting county-level abortion rates from legislative climate without the influence of
demographic variables that may confound the causal effect.

Logistic Regression: PS/IP weighting.

1. Use logistic regression to estimate propensity of having a restrictive legislative climate given
a set of demographic factors, X.

2. Weight outcomes according to units’ inverse probability of exposure (i.e., propensity score
p(z) = P(T = 1|X = z)), such that a county’s assigned weight is:
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where T' denotes the treatment variable is_highly_restrictive__20X0.

Following the specifications provided in the paper, which mention the use of county-specific
demographic data—*“including the percentage of the population in each race and ethnicity
category, median income, and total female population”—we implement the following logistic
regression model to derive county-level weights for a given year (2000, 2010, or 2020), with
white_pct and democrat_2008 as the racial and political reference groups, respectively.

glm(is_highly_restrictive__20X0 ~
women + grad_pct +
black_pct + native_american_pct +
asian_pct + hispanic_pct +
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median_income + democrat_2008,
family=binomial (link="logit"), data=abortion)

Seeing as insufficient data led researchers to exclude the year 2000 form their analysis, in tandem
with the fact that the study period did not extend beyond the year 2014, we use the PS weights
derived for the 2010 year.

Regression Model: Study model replication.

Subsetting the data to reflect the 18 states considered in the study’s DiD model, we construct the
following replica, leaving out the fixed effects. Model coefficients and their corresponding 95%
confidence intervals are also provided below.

Im(abortion_rate_2010 ~
dist_to_closest_facility_miles +
is_highly_restrictive__2010,

data=abortion_states,
weights=abortion_states$ps_weight_2010)

Est. 2.5% 97.5%

(Intercept) 4.2364279  4.0130590  4.4597969
dist_ to_ closest_ facility _miles -0.0175533 -0.0200441 -0.0150625
is_ highly restrictive__ 2010 -0.6420688 -0.8676963 -0.4164413

The model coefficient for the binary is_highly_restrictive__2010 varibale suggests that
adoption of a highly restrictive legislative climate is associated with an abortion rate decrease of
approximately 0.64 abortions per 1,000 women, adjusting for distance. On the other hand, results
from the study model discussed in the paper show that, compared to a less restrictive climate, a
highly restrictive legislative climate corresponds to an abortion rate decrease of 0.48 (95% CI:
-0.92, -0.04) abortions per 1,000 women. Although our results reflect a slight increase in legislative
climate effect, our estimate lies within the confidence interval of the study model’s estimate.
Similarly, given that converse also holds, this difference is not immidiately concerning. Rather, it
can most likely be attributed to our ommision of two-way fixed effects and cluster-robust standard
errors. It should be noted however, that the CI for the estimate discussed in the paper is nearly
twice as large as that shown here.

Model Extension

With the model extension objective to explore the role that public services; such as public health
insurance coverage, including Medicaid; may have on abortion rates, we consider the following list
of economic and public health-related factors that may be included in the replicated study model
(above) to accomplish this.

interest_vars <- c("earnings_diff",
"pct_unemployed",
"pct_retirement_income",
"pct_public_assistance",
"mean_public_assistance_income",
"pct_food_stamps",
"pct_health_insurance_covered",
"pct_private_health_insurance",
"pct_public_health_insurance",
"pct_no_health_insurance",



"pct_poverty_prev_12",
"medicaid_cover")

Prior to model building, we decide to look for possible correlations among our variables of interest
to avoid potential multicollinearity. Specifically, we apply a function to each variable in the list to
determine the corresponding set of factors for which strong correlation (set at a threshold of 0.7
in absolute terms) is present within this space.

var_corrs_f <- function(data, var){
corrs <- cor(data, use="complete.obs")
high_corr <- corrs[abs(corrs[,var])>0.7, ]
return(rownames (high_corr))

}

Limiting the list of variables of interest to those that are strictly numeric for this purpose,
we find that, of the remaining 11, a total of 6 factors were strongly correlated with at least
one other numeric variable of interest—"pct_food_stamps", "pct_health_insurance_covered",
"pct_private_health_insurance", "pct_public_health_insurance", "pct_no_health_insurance",

and "pct_poverty_prev_12". Investigating their relationships more closely with the
help of ggpairs, we find that "pct_no_health_insurance" is the direct inverse of
"pct_health_insurance_covered". Hence, we know to exclude the former in the ex-

tended model. Moreover, restricting our attention to positive correlations, we find that
although "pct_food_stamps" is correlated with "pct_public_health_insurance", the
strength of its relationship with "pct_poverty_prev_12" is ever greater, suggesting that
"pct_food_stamps" and "pct_poverty_prev_12" are likely strong predictors of one another.
This being the case, it may be best to remove whichever factor appears least significant
during model selection. However, given the fact that "pct_food_stamps" is still significantly
correlated with "pct_public_health_insurance", we may find neither "pct_food_stamps"
nor "pct_poverty_prev_12" are actually worth keeping in the model; i.e., it is possible that,
given the aforementioned relationships, we don’t gain any significant information about abortion
rates from their inclusion.

Nonetheless, these associations are all important to consider as we segway into the
building the extended model.  For reference, the ggpairs plot below, allows us to
visualize the correlations found to be significant among our variables of interest. Sur-
prisingly, we see that "pct_private_health_insurance" is strongly correlated with
"pct_health_insurance_covered", while not so much with "pct_public_health_insurance".
Although this could be due to what the variables actually represent—given the prominence of
private health insurence in the U.S. for example, it would not be surprising to observe the majority
of counties’ health insurence coverage coming from private companies. It should be noted however,
that the sum of "pct_public_health_insurance" and "pct_private_health_insurance",
does not equal, and is in fact larger than, "pct_health_insurance_covered" for most
counties. For this reason, including all three variables in the model may not cause problems of
multicollinearity, that is, if all happen to be significant, as we later show.
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With these associations in mind, we now turn to building our extended model, employing a backward elimina-
tion model selection procedure. We begin with the full model (study_model_ext_f), including the predictors
relevant to the study aims, and excluding "pct_no_health_insurance", as well as "pct_poverty_prev_12"
due to its immediate lack of significance in the model.

study_model_ext_f <- lm(abortion_rate_2010 ~

dist_to_closest_facility_miles +
is_highly_restrictive__2010 +
earnings_diff +
pct_retirement_income +
pct_unemployed +
pct_public_assistance +
mean_public_assistance_income +
pct_food_stamps +
pct_health_insurance_covered +
pct_private_health_insurance +
pct_public_health_insurance +
medicaid_cover,

data=abortion_states,

weights=abortion_states$ps_weight_2010)

Maintaining the same subset of data used for fitting the full model (full_model_data <- study_model_ext_f$model)
for the purpose of more thorough model comparisons®, we fit the first nested model (study_model_ext1), which

differs from the full model in the exclusion of three terms; "pct_food_stamps", "pct_public_assistance",

and "mean_public_assistance_income"; due to sequential insignificance under backward elimination. For

the last model we consider (study_model_ext2), we remove two additional terms; "pct_retirement_income",

and "pct_unemployed" ; in a similar backward elimination process to reduce the size of the model by
iteratively excluding the least significant covariates.

3Given that the subset of the data used for fitting each model becomes larger as we remove terms that displayed significant
quantities of missing values, we proceed with the complete cases relevant to the covariates included in the full model. This
allows for more more robust model comparisons between the full model and subsequent nested models via methods such as
likelihood ratio tests (LRTS).



We now compare the three extended models by means of likelihood ratio tests (LRTs), adjusted R?, and AIC
values. Starting with the first approach, we perform a total of two LRTS; initially comparing the full model
to the first nested model, and subsequently comparing the first and second nested models. The outcomes are
as follows.

lrtest(study_model_ext_f, study_model_extl):

#Df LogLik Df Chisq Pr(>Chisq)
1 14 -854.88
2 11 -843.65 -3 22.47 5.209e-05 #*x

lrtest(study_model_extl, study_model_ext2):

#Df LogLik Df Chisq Pr(>Chisq)
1 11 -843.65
2 9 -847.91 -2 8.5291  0.01406 *

At the 0.05 significance level, these results suggest that, in either case, the more complex model is preferable
over the nested model; namely, study_model_ext_£f. Specifically, in having rejected the null hypothesis
that both models fit the data equally well in light of the omitted predictors having no significant effect over
the response. By contrast, evaluating the three models on the basis of both their adjusted R? and AIC
values, we find that the first nested model provides the better fit in each case. That is, looking at the table
of values provided below, we see that study_model_ext1 not only yields the highest adjusted R?, but the
lowest AIC value as well. Although there is little difference between derived adjusted R? values, the fact
that study_model_extl produced a value not only close to, but higher than that given by the full model,
implies that the additional factors in the complex model do not help explain any of the variation present in
the data. Moreover, the fact that study_model_ext1 also displayed the lowest AIC value further suggests
that, compared to the more complex and more simple model, it provides a better fit to the data.

Model Adj. R°2  AIC

study__model_ext_f 0.3932461 1737.760
study_model extl  0.3948453 1709.291
study__model ext2 0.3847810 1713.820

Based on all three measures used for comparison, we determine that study_model_ext1 is the best-fit model,
the coefficients for which are given below.

Est. 2.5% 97.5%

(Intercept) -0.0057121 -4.8532876  4.8418634
dist_ to_ closest_ facility miles -0.0190868 -0.0251555 -0.0130182
is_ highly restrictive_ 2010 0.0596425 -0.4614115 0.5806965

earnings_ diff -0.0001235 -0.0001782 -0.0000688
pct__retirement__income -0.1008964 -0.1833896 -0.0184032
pct__unemployed 0.0844815 -0.0005522  0.1695151

pct__health insurance covered 0.4515773  0.2859054  0.6172492
pct__private health insurance -0.3638206 -0.4993886 -0.2282526
pct__public__health insurance -0.2437425 -0.3655213 -0.1219637
medicaid__coverTRUE 1.8930433  1.2575289  2.5285576




These results, suggest that although the variables "pct_food_stamps", "pct_public_assistance", and
"mean_public_assistance_income", may be associated with the outcome of interest, their inclusion in the
model does not significantly improve the prediction of county-level abortion rates given the other model
covariates. This may, in part, be due to the fact that several variables are strongly correlated, as shown
previously. However, it is possible for our threshold of 0.7 for “significant correlation” may have been set
too high to detect those possibly reflected here. Moreover, the fact that this model provides the best fit is
also indicative of the fact that "pct_retirement_income" and "pct_unemployed" are significant, at least in
the presence of the remaining factors, for predicting county-level abortion rates. More importantly however,
this result validates the prominent role that public health services, especially Medicaid, and other economic
factors play in accessibility to abortions. Specifically, the coefficient for Medicaid for example, indicates that
its availability contributes to an increase of as much as 1.89 abortions per 1,000 women. Remarkably, this
variable by itself has a more drastic impact on abortion rates than does the the state of a county’s legislative
climate.
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Code Appendix

## Libraries
library(tidyverse)
library(1lme4)
library(lmtest)
library(GGally)
library(kableExtra)

## Data

rep_health <- read.csv("/Users/antonellabasso/Desktop/PHP2550/Data/reproductive_health.csv")
state_laws <- read.csv("/Users/antonellabasso/Desktop/PHP2550/Data/state_laws.csv")

abortion <- left_join(rep_health, state_laws, by="state")

abortion <- abortion %>%
mutate(grad_pct=college_grad/totalpop,
women_pct=women/totalpop)

head(abortion)

## Logistic Regression (Propensity Scores)

(1) using logistic regression to estimate propensity of exposure

gtven a set of demographic factors

(2) weighting units according to the inverse of corresponding likelihoods
to remove potential confounding

H H R R

*

restrictive climate = outcome <- treatment/exposure

# with:
# white_pct = reference group
# republican_2008 = reference group

PS_LR_2000 <- glm(is_highly_restrictive__2000 ~
women + grad_pct +
black_pct + native_american_pct +
asian_pct + hispanic_pct +
median_income + democrat_2008,
family=binomial(link="logit"), data=abortion)

PS_LR_2010 <- glm(is_highly_restrictive__2010 ~
women + grad_pct +
black_pct + native_american_pct +
asian_pct + hispanic_pct +
median_income + democrat_2008,
family=binomial (link="logit"), data=abortion)

PS_LR_2020 <- glm(is_highly_restrictive__2020 ~
women + grad_pct +
black_pct + native_american_pct +
asian_pct + hispanic_pct +
median_income + democrat_2008,
family=binomial (link="logit"), data=abortion)

# summary (PS_LR_2000)
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# summary(PS_LR_2010)
# summary (PS_LR_2020)

# propensity score (PS) wetights

abortion$ps_weight_2000 <- ifelse(abortion$is_highly_restrictive__2000,
1/PS_LR_2000$fitted.values,
1/(1-PS_LR_2000$fitted.values))

abortion$ps_weight_2010 <- ifelse(abortion$is_highly_restrictive__2010,
1/PS_LR_2010%$fitted.values,
1/(1-PS_LR_2010$fitted.values))

abortion$ps_weight_2020 <- ifelse(abortion$is_highly_restrictive__2020,
1/PS_LR_2020$fitted.values,
1/(1-PS_LR_2020$fitted.values))

# NOTE: Due to study spectifications, we proceed with PS wetghts for 2010 only.

#checking balance
mean(abortion$ps_weight_2010) # ~ 2

## Regression (Study) Model Replication

# states used in the study

states <- c("arizona", "delaware", "georgia", "illinois", "indiana", "michigan",
"new york", "morth carolina", "ohio", "oklahoma", "oregon", "pennsylvania",
"south carolina", "texas", "utah", "vermont", "washington", "wisconsin"

abortion_states <- abortion %>% filter(state %in) states)

# replicated model without fized effects
study_model <- 1lm(abortion_rate_2010 ~
dist_to_closest_facility_miles +
is_highly_restrictive__2010,
data=abortion_states,
weights=abortion_states$ps_weight_2010)
summary (study_model)

# model coefficients & 95/ CI
study_model_coefs <- as.data.frame(cbind(Est.=coef (study_model),
confint (study_model, level=0.95)))

## Model Extension

# identifying variables of interest (non-demographic)

interest_vars <- c("earnings diff",
"pct_unemployed",
"pct_retirement_income",
"pct_public_assistance",
"mean_public_assistance_income",
"pct_food_stamps",
"pct_health_insurance_covered",
"pct_private_health_insurance",
"pct_public_health_insurance",
"pct_no_health_insurance",
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"pct_poverty_prev_12",
"medicaid_cover")

# numeric interest variables
interest_vars_num <- names(
abortion_states[, which(names(abortion_states) %in% interest_vars)] %>%
select_if (is.numeric))

# first looking for correlations in wvariables of interest to avoid multicollinearity

# function to obtain all wariables sig. correlated with specified variable
var_corrs_f <- function(data, var){

corrs <- cor(data, use="complete.obs")

high_corr <- corrs[abs(corrs[,var])>0.7, ]

return(rownames (high_corr))

}

# list of wariables sig. correlated with each wvariable of interest
corr_list <- list()
for (i in 1:length(interest_vars_num)){
corr_list[[i]] <- var_corrs_f(
abortion_states[, which(names(abortion_states) %in% interest_vars_num)],
interest_vars_num[i])

# only wariables 5-10 had strong correlations
#interest_wvars_num[5:10]
#corr_list[5:10]

# getting all variables correlated with those having strong correlations
corr_vars <- unique(c(unique(rapply(corr_list, unique)),
interest_vars_num[5:10]))

# visualizing with ggpairs

# all correlated wvars
ggpairs_plotl <- ggpairs(
abortion_states[, which(names(abortion_states) %in% corr_vars)],
columnLabels=c("food stamps", "covered health ins.", "private health ins.",
"public health ins.", "no health ins.", "poverty prev."))

# removing no health insurance (inverse of covered health insurance)
ggpairs_plot2 <- ggpairs(
abortion_states[, which(names(abortion_states) %inY%
corr_vars [corr_vars!="pct_no_health_insurance"])],
columnLabels=c("food stamps", "covered health ins.", "private health ins.",
"public health ins.", "poverty prev."))

# surprisingly, covered h.%i. ts strongly correlated with private health insurance
# and public and private are not
# so we could just keep private and public (rather than covered and public)
ggpairs_plot3 <- ggpairs(
abortion_states[, which(names(abortion_states) %inY%
corr_vars[!corr_vars

13



%in/, c("pct_no_health_insurance",
"pct_health_insurance_covered")])],
columnLabels=c("food stamps", "private health ins.",
"public health ins.", "poverty prev."))

# poverty and food stamps seem to be strong predictors of one another
# we must eliminate one in the model (whichever is least significant, <f any)
ggpairs_plot4d <- ggpairs(
abortion_states[, which(names(abortion_states) %inJ
corr_vars[!corr_vars
%in, c("pct_no_health_insurance",
"pct_health_insurance_covered",
"pct_poverty_prev_12")1)],
columnLabels=c("food stamps",
"private health ins.", "public health ins."))

# food stamps is also strongly correlated with public insurance, so we may find that we don't meed both

# building extended model

# backward selection
# remove variables based on correlations discovered
# use AIC and LRT to compare nested models

# full model
study_model_ext_f <- lm(abortion_rate_2010 ~
dist_to_closest_facility_miles +
is_highly_restrictive__2010 +
earnings_diff +
pct_retirement_income +
pct_unemployed +
pct_public_assistance +
mean_public_assistance_income +
pct_food_stamps +
# pct_poverty prev_12 + # MC (food stamps), less sig.
pct_health_insurance_covered +
pct_private_health_insurance +
pct_public_health_insurance +
# pct_no_health_insurance + # MC (covered hi), NA
medicaid_cover,
data=abortion_states,
weights=abortion_states$ps_weight_2010)

# using data from the full model for comparison in LRT
full_model_data <- study_model_ext_f$model

# first nested model

study_model_extl <- lm(abortion_rate_2010 ~
dist_to_closest_facility_miles +
is_highly_restrictive__2010 +
earnings_diff +
pct_retirement_income +
pct_unemployed +
#pct_public_assistance + # non sig.
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#mean_public_assistance_income + # mon sig.
#pct_food_stamps + # non sig.
#pct_poverty prev_12 +
pct_health_insurance_covered +
pct_private_health_insurance +
pct_public_health_insurance +
#pct_no_health_insurance +
medicaid_cover,
data=full_model_data,
weights=full_model_data$ps_weight_2010)

# second nested model
study_model_ext2 <- 1lm(abortion_rate_2010 ~
dist_to_closest_facility_miles +
is_highly_restrictive__2010 +
earnings_diff +
#pct_retirement_income + # less sig.
#pct_unemployed + # less sig.
#pct_public_assistance +
#mean_public_assistance_income +
#pct_food_stamps +
#pct_poverty_prev_12 +
pct_private_health_insurance +
pct_health_insurance_covered +
pct_public_health_insurance +
#pct_no_health_insurance +
medicaid_cover,
data=full_model_data,
weights=full_model_data$ps_weight_2010)

*

summary (study_model_ext_f)
# summary (study_model_extl)
# summary (study_model_ext2)

# model comparisons

# adjusted R squared

summary (study_model_ext_f)$adj.r.squared # 0.3932/61

summary (study_model_extl)$adj.r.squared # highest (0.3948453)
summary (study_model_ext2)$adj.r.squared # lowest (0.384781)
# suggests study_model_exztl is preferable

# AIC

AIC(study_model_ext_f) # highest (1737.76)
AIC(study_model_extl) # lowest (1709.291)
AIC(study_model_ext2) # 1713.82

# suggests study_model_exztl is preferable

# LRT

lrtest(study_model_ext_f, study_model_extl) # reject null
lrtest(study_model_extl, study_model_ext2) # reject null
# suggests study_model_ext_f is preferable

# thus, we select study_model_extl
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# predicted
# model coefficients & 95/ CI

study_model_ext_coefs <- as.data.frame(cbind(Est.=coef (study_model_extl),
confint (study_model_extl, level=0.95)))
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